|
tuple | trainset1 = easy.createRunSet( "corporate_logos" ) |
|
tuple | trainer = easy.getTrainer( "BOW_Trainer") |
|
tuple | model1 = easy.train( trainer, trainset1 ) |
|
tuple | testset1 = easy.createRunSet( "testImg", "UNPURPOSED" ) |
|
tuple | detector = easy.getDetector( "BOW_Detector" ) |
|
tuple | result1 = easy.detect( detector, model1, testset1 ) |
|
string | reject_folder = easy.CVAC_DataDir+"/corporate_logos_round2/reject" |
|
list | nologos = ["TestKrFlag.jpg", "italia.jpg", "korean-american-flag.jpg", "TestUsFlag.jpg"] |
|
tuple | fname = os.path.join(root, filename) |
|
string | newf = reject_folder+"/" |
|
list | mapwithreject = trainset1['classmap'] |
|
tuple | trainset2 = easy.createRunSet( "corporate_logos_round2", classmap=mapwithreject ) |
|
tuple | model2 = easy.train( trainer, trainset2 ) |
|
Easy! mini tutorial
Repeatedly train and evaluate for efficient label use; bootstrap.
matz 6/21/2013